32 research outputs found

    Time correlated quantum amplitude damping channel

    Get PDF
    We analyze the problem of sending classical information through qubit channels where successive uses of the channel are correlated. This work extends the analysis of C. Macchiavello and G. M. Palma to the case of a non-Pauli channel - the amplitude damping channel. Using the channel description outlined in S. Daffer, et al, we derive the correlated amplitude damping channel. We obtain a similar result to C. Macchiavello and G. M. Palma, that is, that under certain conditions on the degree of channel memory, the use of entangled input signals may enhance the information transmission compared to the use of product input signals.Comment: 9 pages, REVTex

    Unital quantum operators on the Bloch ball and Bloch region

    Full text link
    For one qubit systems, we present a short, elementary argument characterizing unital quantum operators in terms of their action on Bloch vectors. We then show how our approach generalizes to multi-qubit systems, obtaining inequalities that govern when a ``diagonal'' superoperator on the Bloch region is a quantum operator. These inequalities are the n-qubit analogue of the Algoet-Fujiwara conditions. Our work is facilitated by an analysis of operator-sum decompositions in which negative summands are allowed.Comment: Revised and corrected, to appear in Physical Review

    Reconstruction of superoperators from incomplete measurements

    Full text link
    We present strategies how to reconstruct (estimate) properties of a quantum channel described by the map E based on incomplete measurements. In a particular case of a qubit channel a complete reconstruction of the map E can be performed via complete tomography of four output states E[rho_j ] that originate from a set of four linearly independent test states j (j = 1, 2, 3, 4) at the input of the channel. We study the situation when less than four linearly independent states are transmitted via the channel and measured at the output. We present strategies how to reconstruct the channel when just one, two or three states are transmitted via the channel. In particular, we show that if just one state is transmitted via the channel then the best reconstruction can be achieved when this state is a total mixture described by the density operator rho = I/2. To improve the reconstruction procedure one has to send via the channel more states. The best strategy is to complement the total mixture with pure states that are mutually orthogonal in the sense of the Bloch-sphere representation. We show that unitary transformations (channels) can be uniquely reconstructed (determined) based on the information of how three properly chosen input states are transformed under the action of the channel.Comment: 13 pages, 6 figure

    A quantization procedure based on completely positive maps and Markov operators

    Full text link
    We describe ω\omega-limit sets of completely positive (CP) maps over finite-dimensional spaces. In such sets and in its corresponding convex hulls, CP maps present isometric behavior and the states contained in it commute with each other. Motivated by these facts, we describe a quantization procedure based on CP maps which are induced by Markov (transfer) operators. Classical dynamics are described by an action over essentially bounded functions. A non-expansive linear map, which depends on a choice of a probability measure, is the centerpiece connecting phenomena over function and matrix spaces

    Quantum Network Coding

    Get PDF
    Since quantum information is continuous, its handling is sometimes surprisingly harder than the classical counterpart. A typical example is cloning; making a copy of digital information is straightforward but it is not possible exactly for quantum information. The question in this paper is whether or not quantum network coding is possible. Its classical counterpart is another good example to show that digital information flow can be done much more efficiently than conventional (say, liquid) flow. Our answer to the question is similar to the case of cloning, namely, it is shown that quantum network coding is possible if approximation is allowed, by using a simple network model called Butterfly. In this network, there are two flow paths, s_1 to t_1 and s_2 to t_2, which shares a single bottleneck channel of capacity one. In the classical case, we can send two bits simultaneously, one for each path, in spite of the bottleneck. Our results for quantum network coding include: (i) We can send any quantum state |psi_1> from s_1 to t_1 and |psi_2> from s_2 to t_2 simultaneously with a fidelity strictly greater than 1/2. (ii) If one of |psi_1> and |psi_2> is classical, then the fidelity can be improved to 2/3. (iii) Similar improvement is also possible if |psi_1> and |psi_2> are restricted to only a finite number of (previously known) states. (iv) Several impossibility results including the general upper bound of the fidelity are also given.Comment: 27pages, 11figures. The 12page version will appear in 24th International Symposium on Theoretical Aspects of Computer Science (STACS 2007

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino

    The H\"older Inequality for KMS States

    Full text link
    We prove a H\"older inequality for KMS States, which generalises a well-known trace-inequality. Our results are based on the theory of non-commutative LpL_p-spaces.Comment: 10 page

    Proof of the ionization conjecture in a reduced Hartree-Fock model

    Full text link
    The ionization conjecture for atomic models states that the ionization energy and maximal excess charge are bounded by constants independent of the nuclear charge. We prove this for the Hartree-Fock model without the exchange term.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46574/1/222_2005_Article_BF01245077.pd

    Unique Solutions to Hartree-Fock Equations for Closed Shell Atoms

    Full text link
    In this paper we study the problem of uniqueness of solutions to the Hartree and Hartree-Fock equations of atoms. We show, for example, that the Hartree-Fock ground state of a closed shell atom is unique provided the atomic number ZZ is sufficiently large compared to the number NN of electrons. More specifically, a two-electron atom with atomic number Z≥35Z\geq 35 has a unique Hartree-Fock ground state given by two orbitals with opposite spins and identical spatial wave functions. This statement is wrong for some Z>1Z>1, which exhibits a phase segregation.Comment: 18 page

    Nuclearity and Thermal States in Conformal Field Theory

    Full text link
    We introduce a new type of spectral density condition, that we call L^2-nuclearity. One formulation concerns lowest weight unitary representations of SL(2,R) and turns out to be equivalent to the existence of characters. A second formulation concerns inclusions of local observable von Neumann algebras in Quantum Field Theory. We show the two formulations to agree in chiral Conformal QFT and, starting from the trace class condition for the semigroup generated by the conformal Hamiltonian L_0, we infer and naturally estimate the Buchholz-Wichmann nuclearity condition and the (distal) split property. As a corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and so there exists a beta-KMS state for the translation dynamics on the net of C*-algebras for every inverse temperature beta>0. We include further discussions on higher dimensional spacetimes. In particular, we verify that L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction
    corecore